
Grainsize 
•  Charm++ philosophy: 
–  let the programer decompose their work and data 

into coarse-grained entities 
•  It is important to understand what I mean by 

coarse-grained entities 
–  You don’t write sequential programs that some 

system will auto-decompose 
–  You don’t write programs when there is one 

object for each float 
–  You consciously  choose a grainsize, BUT choose 

it independent of the number of processors 
•  Or parameterize it, so you can tune later 

1 



2 

Crack Propagation 

Decomposition into 16 chunks (left) and 128 chunks, 8 for 
each PE (right). The middle area contains cohesive elements. 
Both decompositions obtained using Metis. Pictures: S. 
Breitenfeld, and P. Geubelle 

This is 2D, circa 2002…  
but shows over-decomposition for unstructured meshes.. 



Grainsize example: NAMD 
•  High Performing examples: (objects are the 

work-data units in Charm++) 
•  On Blue Waters,  100M atom simulation,   
–  128K cores (4K nodes), 5,510,202 objects  

•  Edison, Apoa1(92K atoms)   
–  4K cores ,  33124 objects 

•  Hopper, STMV, 1M atoms,   
–  15,360 cores,  430,612  objects 

3 



Grainsize: Weather Forecasting in BRAMS 

4 

•  Brams: Brazillian weather code (based on RAMS) 
•  AMPI version (Eduardo Rodrigues, with Mendes , J. Panetta, ..) 

Instead of using 64 work units on 64 cores, used 1024 on 64 



5 

Working definition of grainsize :  
amount of computation per remote interaction 

Choose grainsize to be just large 
enough to amortize the overhead  



Grainsize in a common setting 

6 

 1

 2

 4

128M32M8M2M512K64K16K4K

tim
es

te
p(

se
c)

number of points per chare 

Jacobi3D running on JYC using 64 cores on 2 nodes

2048x2048x2048 (total problem size)

2 MB/chare,  
256 objects per core 



Rules	  of	  thumb	  for	  grainsize	  

•  Make it as small as possible, as long as it 
amortizes the overhead 

•  More specifically, ensure: 
–  Average grainsize is greater than k!v (say 10v) 
–  No single grain should be allowed to be too large  

•  Must be smaller than T/p, but actually we can express it 
as  
– Must be smaller than k!m!v (say 100v) 

•  Important corollary: 
–  You can be at close to optimal grainsize without 

having to think about P, the number of 
processors 

7	  
7	  



8 

Charm++ Applications  
as case studies 

Only brief overview today 



NAMD: Biomolecular Simulations 

•  Collaboration with K. 
Schulten 

•  With over 50,000 
registered users 

•  Scaled to most top US 
supercomputers 

•  In production use on 
supercomputers and 
clusters and desktops 

•  Gordon Bell award in 
2002 

Recent success: 
Determination of the 
structure of HIV capsid 
by researchers including 
Prof Schulten  

9 



10 

Molecular Dynamics: NAMD 
•  Collection of [charged] atoms 

–  With bonds 
–  Newtonian mechanics 
–  Thousands to millions atoms 

•  At each time-step 
–  Calculate forces on each atom  

•  Bonds 
•  Non-bonded: electrostatic and van 

der Waal’s 
–  Short-distance: every timestep 
–  Long-distance: using PME (3D FFT) 
–  Multiple Time Stepping : PME every 

4 timesteps  
–  Calculate velocities 
–  Advance positions 

Challenge: femtosecond time-step, millions needed! 



Hybrid	  Decomposi9on	  

11	  

Object	  Based	  Paralleliza9on	  for	  MD:	  Force	  Decomp.	  +	  Spa9al	  Decomp.	  

" 	  We	  have	  many	  
objects	  to	  load	  balance:	  

o 	  Each	  diamond	  can	  be	  
assigned	  to	  any	  proc.	  
o 	  Number	  of	  diamonds	  
(3D):	  	  
o 	  14·∙Number	  of	  Cells	  

	  



Parallelization using Charm++ 

12 



Sturdy design! 
•  This design,  
–  done in 1995 or so, running on 12 node HP cluster 

•  Has survived 
–  With minor refinements 

•  Until today 
–  Scaling to 500,000+ cores on Blue Waters! 
–  300,000 Cores of Jaguar, or BlueGene/P 

13 

1993 



14 

Shallow valleys, high peaks, nicely overlapped PME 

green: communication 

Red: integration Blue/Purple: electrostatics 

turquoise: angle/dihedral 

Orange: PME 

94% efficiency 

Apo-A1, on BlueGene/L, 1024 procs 

Time intervals on X axis, activity added across processors on Y axis 

Projections: Charm++ Performance Analysis Tool 



NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and 
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks 

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256  512  1024  2048  4096  8192  16384

Pe
rfo

rm
an

ce
 (n

s 
pe

r d
ay

)

Number of Nodes

NAMD on Petascale Machines (2fs timestep with PME)

21M atoms

224M atoms

Titan XK7
Blue Waters XE6

Mira Blue Gene/Q



ChaNGa: Parallel Gravity 
•  Collaborative project 

(NSF) 
–  with Tom Quinn, Univ. of 

Washington 
•  Gravity, gas dynamics 
•  Barnes-Hut tree codes 

–  Oct tree is natural decomp 
–  Geometry has better 

aspect ratios, so you 
“open” up fewer nodes 

–  But is not used because it 
leads to bad load balance 

–  Assumption: one-to-one 
map between sub-trees 
and PEs 

–  Binary trees are considered 
better load balanced 

16 

With Charm++: Use Oct-Tree, and 
let Charm++ map subtrees to 
processors 

Evolution of Universe and 
Galaxy Formation 



ChaNGa: Cosmology Simulation 

•  Tree: Represents 
particle 
distribution 

•  TreePiece: object/
chares containing 
particles 

Collaboration with 
Tom Quinn UW 



•  Asynchronous, highly overlapped, phases 
•  Requests for remote data overlapped with 

local computations 

ChaNGa: Optimized Performance 

18 



ChaNGa : a recent result 

19 



Episimdemics 
•  Simulation of spread of contagion 
–  Code by Madhav Marathe, Keith Bisset, .. Vtech 
–  Original was in MPI 

•  Converted to Charm++ 
–  Benefits: asynchronous reductions improved 

performance considerably 

20 



21 

Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by 
interaction 

S 

I 

Local transition 

P1 

P2 

P3 

P4 

P = 1-exp(t·log(1-I·S)) 
- t: duration of  

      co-presence 

- I: infectivity 

- S: susceptivity 

 
infectious 

uninfected 

S 

I 

t 

Location Social 
contact 
network L1 

L2 

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 3 / 26



22 

Strong scaling performance with the largest data set

 0.1

 1

 10

 100

256 512 1K 2K 4K 8K 16K 32K 64K 128K  256K

Si
m

ul
at

io
n 

tim
e 

pe
r d

ay
 (s

)

Number of core-modules

Strong Scaling (BlueWaters | XE6)

352K

RR-splitLoc, noBuf
RR, mbuf 

RR-splitLoc, mbuf 

 0.1

 1

 10

 100

1K 2K 4K 8K 16K 32K 64K 128K

Si
m

ul
at

io
n 

tim
e 

pe
r d

ay
 (s

)

Number of cores

Strong Scaling (Vulcan | BG/Q)

RR, mbuf 
RR, TRAM

RR-splitLoc, mbuf 
RR-splitLoc, noBuf
RR-splitLoc, TRAM

 0.1

 1

 10

 100

256 512 1K 2K 4K 8K 15K

Si
m

ul
at

io
n 

tim
e 

pe
r d

ay
 (s

)

Number of cores

Strong Scaling (Xeon, Infiniband)
RR-splitLoc Sierra, TRAM

Cab, TRAM
Shadowfax, mbuf

Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 26 / 26



OpenAtom 
Car-Parinello Molecular Dynamics 

NSF ITR 2001-2007, IBM, DOE,NSF  

23 

Molecular Clusters : Nanowires: 

Semiconductor Surfaces: 3D-Solids/Liquids: 

Recent NSF SSI-SI2 grant 
With 

G. Martyna (IBM)  
Sohrab Ismail-Beigi 

Using Charm++ virtualization, we can efficiently scale 
small (32 molecule) systems to thousands of processors 



Decomposition and Computation 
Flow 

24 



Topology Aware Mapping of Objects 

25 



Improvements by topological aware 
mapping of computation to processors 

26 

The simulation of the left panel, maps computational work to processors taking the network 
connectivity into account while the right panel simulation does not. The “black’’ or idle time 
processors spent waiting for computational work to arrive on processors is significantly 
reduced at left. (256waters, 70R, on BG/L 4096 cores) 

Punchline: Overdecomposition into Migratable Objects created the 
degree of freedom needed for flexible mapping  



OpenAtom Performance Sampler 

27 

 1

 2

 4

 8

 16

 32

512 1K 2K 4K 8K 16K

T
im

e
st

e
p
 (

se
cs

/s
te

p
)

No. of cores

OpenAtom running WATER 256M 70Ry on various platforms

Blue Gene/L
Blue Gene/P

Cray XT3

Ongoing work on:  
K-points 
 



Mini-App Features Machine Max cores 
AMR Overdecomposition, 

Custom array index, 
Message priorities, 

Load Balancing, 
Checkpoint restart 

BG/Q 131,072 

LeanMD Overdecomposition, 
Load Balancing, 

Checkpoint restart, 
Power awareness 

BG/P  
BG/Q 

131,072 
32,768 

 

Barnes-Hut 
(n-body) 

Overdecomposition, 
Message priorities, 

Load Balancing 

Blue Waters 16,384 

LULESH 2.02 AMPI, Over-
decomposition, Load 

Balancing 

Hopper 8,000 

PDES Overdecomposition, 
Message priorities, 

TRAM 

Stampede 4,096 

MiniApps 

28 



Mini-App Features Machine Max cores 
1D FFT Interoperable with 

MPI 
BG/P 
BG/Q 

65,536 
16,384 

Random Access TRAM BG/P  
BG/Q 

 

131,072 
16,384 

Dense LU SDAG XT5 8,192 

Sparse Triangular 
Solver 

SDAG BG/P 512 

GTC SDAG BG/Q 1,024 

SPH Blue Waters - 

More MiniApps 

29 



30 

A recently 
published book 
surveys seven 
major applications 
developed using 
Charm++ 

More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 



Where are Exascale Issues? 
•  I didn’t bring up exascale at all so far.. 
–  Overdecomposition, migratability, asynchrony 

were needed on yesterday’s machines too 
–  And the app community has been using them 
–  But:  

•  On *some* of the applications, and maybe without a 
common general-purpose RTS 

•  The same concepts help at exascale 
–  Not just help, they are necessary, and adequate 
–  As long as the RTS capabilities are improved 

•  We have to apply overdecomposition to all 
(most) apps 

31 



Relevance to Exascale 

32 

Intelligent, introspective, Adaptive 
Runtime Systems, developed for handling 
application’s dynamic variability, already 
have features that can deal with 
challenges posed by exascale hardware 



Fault Tolerance in Charm++/AMPI 
•  Four approaches available: 
–  Disk-based checkpoint/restart 
–  In-memory double checkpoint w auto. restart 
–  Proactive object migration 
–  Message-logging: scalable fault tolerance 

•  Common Features: 
–  Easy checkpoint: migrate-to-disk 
–  Based on dynamic runtime capabilities 
–  Use of object-migration 
–  Can be used in concert with load-balancing 

schemes 
33 

Demo at Tech 
Marketplace 



Saving Cooling Energy 
•  Easy: increase A/C setting 

–  But: some cores may get too hot 
•  So, reduce frequency if temperature is high (DVFS) 

–  Independently for each chip 
•  But, this creates a load imbalance! 
•  No problem, we can handle that: 

–  Migrate objects away from the slowed-down processors 
–  Balance load using an existing strategy 
–  Strategies take speed of processors into account 

•  Implemented in experimental version 
–  SC 2011 paper, IEEE TC paper 

•  Several new power/energy-related strategies 
–  PASA ‘12: Exploiting differential sensitivities of  code segments 

to frequency change  

34 

Demo at Tech 
Marketplace 



PARM:Power Aware Resource Manager 

•  Charm++ RTS facilitates malleable jobs 
•  PARM can improve throughput under a fixed 

power budget using: 
–  overprovisioning (adding more nodes than 

conventional data center) 
–  RAPL (capping power consumption of nodes) 
–  Job malleability and moldability 

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"

35 



Summary 
•  Charm++ embodies an adaptive, introspective 

runtime system 
•  Many applications have been developed using it 

–  NAMD, ChaNGa, Episimdemics, OpenAtom, … 
–  Many miniApps, and third-party apps 

•  Adaptivity developed for apps is useful for 
addressing exascale challenges 
–  Resilience, power/temperature optimizations, .. 

36 

More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 

Overdecomposition Asynchrony Migratability 


